Abstract:We review some recent learning approaches in variational imaging, based on bilevel optimisation, and emphasize the importance of their treatment in function space. The paper covers both analytical and numerical techniques. Analytically, we include results on the existence and structure of minimisers, as well as optimality conditions for their characterisation. Based on this information, Newton type methods are studied for the solution of the problems at hand, combining them with sampling techniques in case of large databases. The computational verification of the developed techniques is extensively documented, covering instances with different type of regularisers, several noise models, spatially dependent weights and large image databases.
Abstract:We study the qualitative properties of optimal regularisation parameters in variational models for image restoration. The parameters are solutions of bilevel optimisation problems with the image restoration problem as constraint. A general type of regulariser is considered, which encompasses total variation (TV), total generalized variation (TGV) and infimal-convolution total variation (ICTV). We prove that under certain conditions on the given data optimal parameters derived by bilevel optimisation problems exist. A crucial point in the existence proof turns out to be the boundedness of the optimal parameters away from $0$ which we prove in this paper. The analysis is done on the original -- in image restoration typically non-smooth variational problem -- as well as on a smoothed approximation set in Hilbert space which is the one considered in numerical computations. For the smoothed bilevel problem we also prove that it $\Gamma$ converges to the original problem as the smoothing vanishes. All analysis is done in function spaces rather than on the discretised learning problem.