Abstract:Estimating closely spaced frequency components of a signal is a fundamental problem in statistical signal processing. In this letter, we introduce 1-D real-valued and complex-valued shifted window (Swin) transformers, referred to as SwinFreq and CVSwinFreq, respectively, for line-spectra frequency estimation on 1-D complex-valued signals. Whereas 2-D Swin transformer-based models have gained traction for optical image super-resolution, we introduce for the first time a complex-valued Swin module designed to leverage the complex-valued nature of signals for a wide array of applications. The proposed approach overcomes the limitations of the classical algorithms such as the periodogram, MUSIC, and OMP in addition to state-of-the-art deep learning approach cResFreq. SwinFreq and CVSwinFreq boast superior performance at low signal-to-noise ratio SNR and improved resolution capability while requiring fewer model parameters than cResFreq, thus deeming it more suitable for edge and mobile applications. We find that the real-valued Swin-Freq outperforms its complex-valued counterpart CVSwinFreq for several tasks while touting a smaller model size. Finally, we apply the proposed techniques for radar range profile super-resolution using real data. The results from both synthetic and real experimentation validate the numerical and empirical superiority of SwinFreq and CVSwinFreq to the state-of-the-art deep learning-based techniques and traditional frequency estimation algorithms. The code and models are publicly available at https://github.com/josiahwsmith10/spectral-super-resolution-swin.
Abstract:Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...
Abstract:Complex-valued neural networks have emerged boasting superior modeling performance for many tasks across the signal processing, sensing, and communications arenas. However, developing complex-valued models currently demands development of basic deep learning operations, such as linear or convolution layers, as modern deep learning frameworks like PyTorch and Tensor flow do not adequately support complex-valued neural networks. This paper overviews a package built on PyTorch with the intention of implementing light-weight interfaces for common complex-valued neural network operations and architectures. Similar to natural language understanding (NLU), which as recently made tremendous leaps towards text-based intelligence, RF Signal Understanding (RFSU) is a promising field extending conventional signal processing algorithms using a hybrid approach of signal mechanics-based insight with data-driven modeling power. Notably, we include efficient implementations for linear, convolution, and attention modules in addition to activation functions and normalization layers such as batchnorm and layernorm. Additionally, we include efficient implementations of manifold-based complex-valued neural network layers that have shown tremendous promise but remain relatively unexplored in many research contexts. Although there is an emphasis on 1-D data tensors, due to a focus on signal processing, communications, and radar data, many of the routines are implemented for 2-D and 3-D data as well. Specifically, the proposed approach offers a useful set of tools and documentation for data-driven signal processing research and practical implementation.
Abstract:Multiple-input-multiple-output (MIMO) millimeter-wave (mmWave) sensors for synthetic aperture radar (SAR) and inverse SAR (ISAR) address the fundamental challenges of cost-effectiveness and scalability inherent to near-field imaging. In this paper, near-field MIMO-ISAR mmWave imaging systems are discussed and developed. The rotational ISAR (R-ISAR) regime investigated in this paper requires rotating the target at a constant radial distance from the transceiver and scanning the transceiver along a vertical track. Using a 77GHz mmWave radar, a high resolution three-dimensional (3-D) image can be reconstructed from this two-dimensional scanning taking into account the spherical near-field wavefront. While prior work in literature consists of single-input-single-output circular synthetic aperture radar (SISO-CSAR) algorithms or computationally sluggish MIMO-CSAR image reconstruction algorithms, this paper proposes a novel algorithm for efficient MIMO 3-D holographic imaging and details the design of a MIMO R-ISAR imaging system. The proposed algorithm applies a multistatic-to-monostatic phase compensation to the R-ISAR regime allowing for use of highly efficient monostatic algorithms. We demonstrate the algorithm's performance in real-world imaging scenarios on a prototyped MIMO R-ISAR platform. Our fully integrated system, consisting of a mechanical scanner and efficient imaging algorithm, is capable of pairing the scanning efficiency of the MIMO regime with the computational efficiency of single pixel image reconstruction algorithms.
Abstract:In this article, we propose a framework for contactless human-computer interaction (HCI) using novel tracking techniques based on deep learning-based super-resolution and tracking algorithms. Our system offers unprecedented high-resolution tracking of hand position and motion characteristics by leveraging spatial and temporal features embedded in the reflected radar waveform. Rather than classifying samples from a predefined set of hand gestures, as common in existing work on deep learning with mmWave radar, our proposed imager employs a regressive full convolutional neural network (FCNN) approach to improve localization accuracy by spatial super-resolution. While the proposed techniques are suitable for a host of tracking applications, this article focuses on their application as a musical interface to demonstrate the robustness of the gesture sensing pipeline and deep learning signal processing chain. The user can control the instrument by varying the position and velocity of their hand above the vertically-facing sensor. By employing a commercially available multiple-input-multiple-output (MIMO) radar rather than a traditional optical sensor, our framework demonstrates the efficacy of the mmWave sensing modality for fine motion tracking and offers an elegant solution to a host of HCI tasks. Additionally, we provide a freely available software package and user interface for controlling the device, streaming the data to MATLAB in real-time, and increasing accessibility to the signal processing and device interface functionality utilized in this article.
Abstract:In this paper, we introduce an innovative super resolution approach to emerging modes of near-field synthetic aperture radar (SAR) imaging. Recent research extends convolutional neural network (CNN) architectures from the optical to the electromagnetic domain to achieve super resolution on images generated from radar signaling. Specifically, near-field synthetic aperture radar (SAR) imaging, a method for generating high-resolution images by scanning a radar across space to create a synthetic aperture, is of interest due to its high-fidelity spatial sensing capability, low cost devices, and large application space. Since SAR imaging requires large aperture sizes to achieve high resolution, super-resolution algorithms are valuable for many applications. Freehand smartphone SAR, an emerging sensing modality, requires irregular SAR apertures in the near-field and computation on mobile devices. Achieving efficient high-resolution SAR images from irregularly sampled data collected by freehand motion of a smartphone is a challenging task. In this paper, we propose a novel CNN architecture to achieve SAR image super-resolution for mobile applications by employing state-of-the-art SAR processing and deep learning techniques. The proposed algorithm is verified via simulation and an empirical study. Our algorithm demonstrates high-efficiency and high-resolution radar imaging for near-field scenarios with irregular scanning geometries.