Abstract:In recent years, model quantization for face recognition has gained prominence. Traditionally, compressing models involved vast datasets like the 5.8 million-image MS1M dataset as well as extensive training times, raising the question of whether such data enormity is essential. This paper addresses this by introducing an efficiency-driven approach, fine-tuning the model with just up to 14,000 images, 440 times smaller than MS1M. We demonstrate that effective quantization is achievable with a smaller dataset, presenting a new paradigm. Moreover, we incorporate an evaluation-based metric loss and achieve an outstanding 96.15% accuracy on the IJB-C dataset, establishing a new state-of-the-art compressed model training for face recognition. The subsequent analysis delves into potential applications, emphasizing the transformative power of this approach. This paper advances model quantization by highlighting the efficiency and optimal results with small data and training time.
Abstract:Diffusion models have gained attention for image editing yielding impressive results in text-to-image tasks. On the downside, one might notice that generated images of stable diffusion models suffer from deteriorated details. This pitfall impacts image editing tasks that require information preservation e.g., scene text editing. As a desired result, the model must show the capability to replace the text on the source image to the target text while preserving the details e.g., color, font size, and background. To leverage the potential of diffusion models, in this work, we introduce Diffusion-BasEd Scene Text manipulation Network so-called DBEST. Specifically, we design two adaptation strategies, namely one-shot style adaptation and text-recognition guidance. In experiments, we thoroughly assess and compare our proposed method against state-of-the-arts on various scene text datasets, then provide extensive ablation studies for each granularity to analyze our performance gain. Also, we demonstrate the effectiveness of our proposed method to synthesize scene text indicated by competitive Optical Character Recognition (OCR) accuracy. Our method achieves 94.15% and 98.12% on COCO-text and ICDAR2013 datasets for character-level evaluation.