Abstract:Point-source transient events (PSTEs) - optical events that are both extremely fast and extremely small - pose several challenges to an imaging system. Due to their speed, accurately characterizing such events often requires detectors with very high frame rates. Due to their size, accurately detecting such events requires maintaining coverage over an extended field-of-view, often through the use of imaging focal plane arrays (FPA) with a global shutter readout. Traditional imaging systems that meet these requirements are costly in terms of price, size, weight, power consumption, and data bandwidth, and there is a need for cheaper solutions with adequate temporal and spatial coverage. To address these issues, we develop a novel compressed sensing algorithm adapted to the rolling shutter readout of an imaging system. This approach enables reconstruction of a PSTE signature at the sampling rate of the rolling shutter, offering a 1-2 order of magnitude temporal speedup and a proportional reduction in data bandwidth. We present empirical results demonstrating accurate recovery of PSTEs using measurements that are spatially undersampled by a factor of 25, and our simulations show that, relative to other compressed sensing algorithms, our algorithm is both faster and yields higher quality reconstructions. We also present theoretical results characterizing our algorithm and corroborating simulations. The potential impact of our work includes the development of much faster, cheaper sensor solutions for PSTE detection and characterization.
Abstract:Traditional deep learning (DL) models are powerful classifiers, but many approaches do not provide uncertainties for their estimates. Uncertainty quantification (UQ) methods for DL models have received increased attention in the literature due to their usefulness in decision making, particularly for high-consequence decisions. However, there has been little research done on how to evaluate the quality of such methods. We use statistical methods of frequentist interval coverage and interval width to evaluate the quality of credible intervals, and expected calibration error to evaluate classification predicted confidence. These metrics are evaluated on Bayesian neural networks (BNN) fit using Markov Chain Monte Carlo (MCMC) and variational inference (VI), bootstrapped neural networks (NN), Deep Ensembles (DE), and Monte Carlo (MC) dropout. We apply these different UQ for DL methods to a hyperspectral image target detection problem and show the inconsistency of the different methods' results and the necessity of a UQ quality metric. To reconcile these differences and choose a UQ method that appropriately quantifies the uncertainty, we create a simulated data set with fully parameterized probability distribution for a two-class classification problem. The gold standard MCMC performs the best overall, and the bootstrapped NN is a close second, requiring the same computational expense as DE. Through this comparison, we demonstrate that, for a given data set, different models can produce uncertainty estimates of markedly different quality. This in turn points to a great need for principled assessment methods of UQ quality in DL applications.