Abstract:The collection and examination of social media has become a useful mechanism for studying the mental activity and behavior tendencies of users. Through the analysis of collected Twitter data, models were developed for classifying drug-related tweets. Using topic pertaining keywords, such as slang and methods of drug consumption, a set of tweets was generated. Potential candidates were then preprocessed resulting in a dataset of 3,696,150 rows. The classification power of multiple methods was compared including support vector machines (SVM), XGBoost, and convolutional neural network (CNN) based classifiers. Rather than simple feature or attribute analysis, a deep learning approach was implemented to screen and analyze the tweets' semantic meaning. The two CNN-based classifiers presented the best result when compared against other methodologies. The first was trained with 2,661 manually labeled samples, while the other included synthetically generated tweets culminating in 12,142 samples. The accuracy scores were 76.35% and 82.31%, with an AUC of 0.90 and 0.91. Additionally, association rule mining showed that commonly mentioned drugs had a level of correspondence with frequently used illicit substances, proving the practical usefulness of the system. Lastly, the synthetically generated set provided increased scores, improving the classification capability and proving the worth of this methodology.
Abstract:Proper scheduling of air assets can be the difference between life and death for a patient. While poor scheduling can be incredibly problematic during hospital transfers, it can be potentially catastrophic in the case of a disaster. These issues are amplified in the case of an air emergency medical service (EMS) system where populations are dispersed, and resources are limited. There are exact methodologies existing for scheduling missions, although actual calculation times can be quite significant given a large enough problem space. For this research, known coordinates of air and health facilities were used in conjunction with a formulated integer linear programming model. This was the programmed through Gurobi so that performance could be compared against custom algorithmic solutions. Two methods were developed, one based on neighbourhood search and the other on Tabu search. While both were able to achieve results quite close to the Gurobi solution, the Tabu search outperformed the former algorithm. Additionally, it was able to do so in a greatly decreased time, with Gurobi actually being unable to resolve to optimal in larger examples. Parallel variations were also developed with the compute unified device architecture (CUDA), though did not improve the timing given the smaller sample size.
Abstract:In a disaster situation, air ambulance rapid response will often be the determining factor in patient survival. Obstacles intensify this circumstance, with geographical remoteness and limitations in vehicle placement making it an arduous task. Considering these elements, the arrangement of responders is a critical decision of the utmost importance. Utilizing real mission data, this research structured an optimal coverage problem with integer linear programming. For accurate comparison, the Gurobi optimizer was programmed with the developed model and timed for performance. A solution implementing base ranking followed by both local and Tabu search-based algorithms was created. The local search algorithm proved insufficient for maximizing coverage, while the Tabu search achieved near-optimal results. In the latter case, the total vehicle travel distance was minimized and the runtime significantly outperformed the one generated by Gurobi. Furthermore, variations utilizing parallel CUDA processing further decreased the algorithmic runtime. These proved superior as the number of test missions increased, while also maintaining the same minimized distance.
Abstract:In this research, an extensive literature review was performed on the recent developments of the ambulance routing problem (ARP) and ambulance location problem (ALP). Both are respective modifications of the vehicle routing problem (VRP) and maximum covering problem (MCP), with modifications to objective functions and constraints. Although alike, a key distinction is emergency service systems (EMS) are considered critical and the optimization of these has become all the more important as a result. Similar to their parent problems, these are NP-hard and must resort to approximations if the space size is too large. Much of the current work has simply been on modifying existing systems through simulation to achieve a more acceptable result. There has been attempts towards using meta-heuristics, though practical experimentation is lacking when compared to VRP or MCP. The contributions of this work are a comprehensive survey of current methodologies, summarized models, and suggested future improvements.