Abstract:We introduce a pipeline for time series classification that extracts features based on the iterated-sums signature (ISS) and then applies a linear classifier. These features are intrinsically nonlinear, capture chronological information, and, under certain settings, are invariant to time-warping. We are competitive with state-of-the-art methods on the UCR archive, both in terms of accuracy and speed. We make our code available at \url{https://github.com/irkri/fruits}.
Abstract:We explore the algebraic properties of a generalized version of the iterated-sums signature, inspired by previous work of F.~Kir\'aly and H.~Oberhauser. In particular, we show how to recover the character property of the associated linear map over the tensor algebra by considering a deformed quasi-shuffle product of words on the latter. We introduce three non-linear transformations on iterated-sums signatures, close in spirit to Machine Learning applications, and show some of their properties.
Abstract:Driven by the need for principled extraction of features from time series,we introduce the iterated-sums signature over any commutative semiring.The case of the tropical semiring is a central, and our motivating, example,as it leads to features of (real-valued) time series that are not easily availableusing existing signature-type objects.
Abstract:In data science, one is often confronted with a time series representing measurements of some quantity of interest. Usually, in a first step, features of the time series need to be extracted. These are numerical quantities that aim to succinctly describe the data and to dampen the influence of noise. In some applications, these features are also required to satisfy some invariance properties. In this paper, we concentrate on time-warping invariants. We show that these correspond to a certain family of iterated sums of the increments of the time series, known as quasisymmetric functions in the mathematics literature. We present these invariant features in an algebraic framework, and we develop some of their basic properties.
Abstract:We introduce a novel class of features for multidimensional time series, that are invariant with respect to transformations of the ambient space. The general linear group, the group of rotations and the group of permutations of the axes are considered. The starting point for their construction is Chen's iterated-integral signature.
Abstract:We introduce a novel class of rotation invariants of two dimensional curves based on iterated integrals. The invariants we present are in some sense complete and we describe an algorithm to calculate them, giving explicit computations up to order six. We present an application to online (stroke-trajectory based) character recognition. This seems to be the first time in the literature that the use of iterated integrals of a curve is proposed for (invariant) feature extraction in machine learning applications.