Abstract:Recent years have seen significant developments in the field of License Plate Recognition (LPR) through the integration of deep learning techniques and the increasing availability of training data. Nevertheless, reconstructing license plates (LPs) from low-resolution (LR) surveillance footage remains challenging. To address this issue, we introduce a Single-Image Super-Resolution (SISR) approach that integrates attention and transformer modules to enhance the detection of structural and textural features in LR images. Our approach incorporates sub-pixel convolution layers (also known as PixelShuffle) and a loss function that uses an Optical Character Recognition (OCR) model for feature extraction. We trained the proposed architecture on synthetic images created by applying heavy Gaussian noise to high-resolution LP images from two public datasets, followed by bicubic downsampling. As a result, the generated images have a Structural Similarity Index Measure (SSIM) of less than 0.10. Our results show that our approach for reconstructing these low-resolution synthesized images outperforms existing ones in both quantitative and qualitative measures. Our code is publicly available at https://github.com/valfride/lpr-rsr-ext/
Abstract:The License Plate Recognition (LPR) field has made impressive advances in the last decade due to novel deep learning approaches combined with the increased availability of training data. However, it still has some open issues, especially when the data come from low-resolution (LR) and low-quality images/videos, as in surveillance systems. This work focuses on license plate (LP) reconstruction in LR and low-quality images. We present a Single-Image Super-Resolution (SISR) approach that extends the attention/transformer module concept by exploiting the capabilities of PixelShuffle layers and that has an improved loss function based on LPR predictions. For training the proposed architecture, we use synthetic images generated by applying heavy Gaussian noise in terms of Structural Similarity Index Measure (SSIM) to the original high-resolution (HR) images. In our experiments, the proposed method outperformed the baselines both quantitatively and qualitatively. The datasets we created for this work are publicly available to the research community at https://github.com/valfride/lpr-rsr/