Abstract:The reliance on large-scale datasets and extensive computational resources has become a major barrier to advancing representation learning in vision, especially in data-scarce domains. In this paper, we address the critical question: Can we escape the big data paradigm in self-supervised representation learning from images? We introduce SCOTT (Sparse Convolutional Tokenizer for Transformers), a shallow tokenization architecture that is compatible with Masked Image Modeling (MIM) tasks. SCOTT injects convolutional inductive biases into Vision Transformers (ViTs), enhancing their efficacy in small-scale data regimes. Alongside, we propose to train on a Joint-Embedding Predictive Architecture within a MIM framework (MIM-JEPA), operating in latent representation space to capture more semantic features. Our approach enables ViTs to be trained from scratch on datasets orders of magnitude smaller than traditionally required --without relying on massive external datasets for pretraining. We validate our method on three small-size, standard-resoultion, fine-grained datasets: Oxford Flowers-102, Oxford IIIT Pets-37, and ImageNet-100. Despite the challenges of limited data and high intra-class similarity, frozen SCOTT models pretrained with MIM-JEPA significantly outperform fully supervised methods and achieve competitive results with SOTA approaches that rely on large-scale pretraining, complex image augmentations and bigger model sizes. By demonstrating that robust off-the-shelf representations can be learned with limited data, compute, and model sizes, our work paves the way for computer applications in resource constrained environments such as medical imaging or robotics. Our findings challenge the prevailing notion that vast amounts of data are indispensable for effective representation learning in vision, offering a new pathway toward more accessible and inclusive advancements in the field.
Abstract:This paper presents a trajectory optimization and control approach for the guidance of an orbital four-arm robot in extravehicular activities. The robot operates near the target spacecraft, enabling its arm's end-effectors to reach the spacecraft's surface. Connections to the target spacecraft can be established by the arms through specific footholds (docking devices). The trajectory optimization allows the robot path planning by computing the docking positions on the target spacecraft surface, along with their timing, the arm trajectories, the six degrees of freedom body motion, and the necessary contact forces during docking. In addition, the paper introduces a controller designed to track the planned trajectories derived from the solution of the nonlinear programming problem. A weighted controller formulated as a convex optimization problem is proposed. The controller is defined as the optimization of an objective function that allows the system to perform a set of tasks simultaneously. Simulation results show the application of the trajectory optimization and control approaches to an on-orbit servicing scenario.