Abstract:This work describes the participation of the MLLP-VRAIN research group in the shared task of the IWSLT 2025 Simultaneous Speech Translation track. Our submission addresses the unique challenges of real-time translation of long-form speech by developing a modular cascade system that adapts strong pre-trained models to streaming scenarios. We combine Whisper Large-V3-Turbo for ASR with the multilingual NLLB-3.3B model for MT, implementing lightweight adaptation techniques rather than training new end-to-end models from scratch. Our approach employs document-level adaptation with prefix training to enhance the MT model's ability to handle incomplete inputs, while incorporating adaptive emission policies including a wait-$k$ strategy and RALCP for managing the translation stream. Specialized buffer management techniques and segmentation strategies ensure coherent translations across long audio sequences. Experimental results on the ACL60/60 dataset demonstrate that our system achieves a favorable balance between translation quality and latency, with a BLEU score of 31.96 and non-computational-aware StreamLAAL latency of 2.94 seconds. Our final model achieves a preliminary score on the official test set (IWSLT25Instruct) of 29.8 BLEU. Our work demonstrates that carefully adapted pre-trained components can create effective simultaneous translation systems for long-form content without requiring extensive in-domain parallel data or specialized end-to-end training.
Abstract:Streaming Machine Translation (MT) is the task of translating an unbounded input text stream in real-time. The traditional cascade approach, which combines an Automatic Speech Recognition (ASR) and an MT system, relies on an intermediate segmentation step which splits the transcription stream into sentence-like units. However, the incorporation of a hard segmentation constrains the MT system and is a source of errors. This paper proposes a Segmentation-Free framework that enables the model to translate an unsegmented source stream by delaying the segmentation decision until the translation has been generated. Extensive experiments show how the proposed Segmentation-Free framework has better quality-latency trade-off than competing approaches that use an independent segmentation model. Software, data and models will be released upon paper acceptance.