MIA
Abstract:Sports video analysis is a widespread research topic. Its applications are very diverse, like events detection during a match, video summary, or fine-grained movement analysis of athletes. As part of the MediaEval 2022 benchmarking initiative, this task aims at detecting and classifying subtle movements from sport videos. We focus on recordings of table tennis matches. Conducted since 2019, this task provides a classification challenge from untrimmed videos recorded under natural conditions with known temporal boundaries for each stroke. Since 2021, the task also provides a stroke detection challenge from unannotated, untrimmed videos. This year, the training, validation, and test sets are enhanced to ensure that all strokes are represented in each dataset. The dataset is now similar to the one used in [1, 2]. This research is intended to build tools for coaches and athletes who want to further evaluate their sport performances.
Abstract:Sports video analysis is a prevalent research topic due to the variety of application areas, ranging from multimedia intelligent devices with user-tailored digests up to analysis of athletes' performance. The Sports Video task is part of the MediaEval 2021 benchmark. This task tackles fine-grained action detection and classification from videos. The focus is on recordings of table tennis games. Running since 2019, the task has offered a classification challenge from untrimmed video recorded in natural conditions with known temporal boundaries for each stroke. This year, the dataset is extended and offers, in addition, a detection challenge from untrimmed videos without annotations. This work aims at creating tools for sports coaches and players in order to analyze sports performance. Movement analysis and player profiling may be built upon such technology to enrich the training experience of athletes and improve their performance.