Abstract:Sound can convey significant information for spatial reasoning in our daily lives. To endow deep networks with such ability, we address the challenge of dense indoor prediction with sound in both 2D and 3D via cross-modal knowledge distillation. In this work, we propose a Spatial Alignment via Matching (SAM) distillation framework that elicits local correspondence between the two modalities in vision-to-audio knowledge transfer. SAM integrates audio features with visually coherent learnable spatial embeddings to resolve inconsistencies in multiple layers of a student model. Our approach does not rely on a specific input representation, allowing for flexibility in the input shapes or dimensions without performance degradation. With a newly curated benchmark named Dense Auditory Prediction of Surroundings (DAPS), we are the first to tackle dense indoor prediction of omnidirectional surroundings in both 2D and 3D with audio observations. Specifically, for audio-based depth estimation, semantic segmentation, and challenging 3D scene reconstruction, the proposed distillation framework consistently achieves state-of-the-art performance across various metrics and backbone architectures.
Abstract:We address the problem of highlight detection from a 360 degree video by summarizing it both spatially and temporally. Given a long 360 degree video, we spatially select pleasantly-looking normal field-of-view (NFOV) segments from unlimited field of views (FOV) of the 360 degree video, and temporally summarize it into a concise and informative highlight as a selected subset of subshots. We propose a novel deep ranking model named as Composition View Score (CVS) model, which produces a spherical score map of composition per video segment, and determines which view is suitable for highlight via a sliding window kernel at inference. To evaluate the proposed framework, we perform experiments on the Pano2Vid benchmark dataset and our newly collected 360 degree video highlight dataset from YouTube and Vimeo. Through evaluation using both quantitative summarization metrics and user studies via Amazon Mechanical Turk, we demonstrate that our approach outperforms several state-of-the-art highlight detection methods. We also show that our model is 16 times faster at inference than AutoCam, which is one of the first summarization algorithms of 360 degree videos