Abstract:Plankton recognition is an important computer vision problem due to plankton's essential role in ocean food webs and carbon capture, highlighting the need for species-level monitoring. However, this task is challenging due to its fine-grained nature and dataset shifts caused by different imaging instruments and varying species distributions. As new plankton image datasets are collected at an increasing pace, there is a need for general plankton recognition models that require minimal expert effort for data labeling. In this work, we study large-scale self-supervised pretraining for fine-grained plankton recognition. We first employ masked autoencoding and a large volume of diverse plankton image data to pretrain a general-purpose plankton image encoder. Then we utilize fine-tuning to obtain accurate plankton recognition models for new datasets with a very limited number of labeled training images. Our experiments show that self-supervised pretraining with diverse plankton data clearly increases plankton recognition accuracy compared to standard ImageNet pretraining when the amount of training data is limited. Moreover, the accuracy can be further improved when unlabeled target data is available and utilized during the pretraining.
Abstract:This paper considers open-set recognition (OSR) of plankton images. Plankton include a diverse range of microscopic aquatic organisms that have an important role in marine ecosystems as primary producers and as a base of food webs. Given their sensitivity to environmental changes, fluctuations in plankton populations offer valuable information about oceans' health and climate change motivating their monitoring. Modern automatic plankton imaging devices enable the collection of large-scale plankton image datasets, facilitating species-level analysis. Plankton species recognition can be seen as an image classification task and is typically solved using deep learning-based image recognition models. However, data collection in real aquatic environments results in imaging devices capturing a variety of non-plankton particles and plankton species not present in the training set. This creates a challenging fine-grained OSR problem, characterized by subtle differences between taxonomically close plankton species. We address this challenge by conducting extensive experiments on three OSR approaches using both phyto- and zooplankton images analyzing also on the effect of the rejection thresholds for OSR. The results demonstrate that high OSR accuracy can be obtained promoting the use of these methods in operational plankton research. We have made the data publicly available to the research community.