Abstract:A variety of forms of artificial intelligence systems have been developed. Two well-known techniques are neural networks and rule-fact expert systems. The former can be trained from presented data while the latter is typically developed by human domain experts. A combined implementation that uses gradient descent to train a rule-fact expert system has been previously proposed. A related system type, the Blackboard Architecture, adds an actualization capability to expert systems. This paper proposes and evaluates the incorporation of a defensible-style gradient descent training capability into the Blackboard Architecture. It also introduces the use of activation functions for defensible artificial intelligence systems and implements and evaluates a new best path-based training algorithm.
Abstract:The Blackboard Architecture provides a mechanism for embodying data, decision making and actuation. Its versatility has been demonstrated across a wide number of application areas. However, it lacks the capability to directly model organizational, spatial and other relationships which may be useful in decision-making, in addition to the propositional logic embodied in the rule-fact-action network. Previous work has proposed the use of container objects and links as a mechanism to simultaneously model these organizational and other relationships, while leaving the operational logic modeled in the rules, facts and actions. While containers facilitate this modeling, their utility is limited by the need to manually define them. For systems which may have multiple instances of a particular type of object and which may build their network autonomously, based on sensing, the reuse of logical structures facilitates operations and reduces storage and processing needs. This paper, thus, presents and assesses two additional concepts to add to the Blackboard Architecture: common properties and generic rules. Common properties are facts associated with containers which are defined as representing the same information across the various objects that they are associated with. Generic rules provide logical propositions that use these generic rules across links and apply to any objects matching their definition. The potential uses of these two new concepts are discussed herein and their impact on system performance is characterized.
Abstract:We introduce a machine learning approach to predict chronic homelessness from de-identified client shelter records drawn from a commonly used Canadian homelessness management information system. Using a 30-day time step, a dataset for 6521 individuals was generated. Our model, HIFIS-RNN-MLP, incorporates both static and dynamic features of a client's history to forecast chronic homelessness 6 months into the client's future. The training method was fine-tuned to achieve a high F1-score, giving a desired balance between high recall and precision. Mean recall and precision across 10-fold cross validation were 0.921 and 0.651 respectively. An interpretability method was applied to explain individual predictions and gain insight into the overall factors contributing to chronic homelessness among the population studied. The model achieves state-of-the-art performance and improved stakeholder trust of what is usually a "black box" neural network model through interpretable AI.