Abstract:The software for operations and network attack results review (SONARR) and the autonomous penetration testing system (APTS) use facts and common properties in digital twin networks to represent real-world entities. However, in some cases fact values will change regularly, making it difficult for objects in SONARR and APTS to consistently and accurately represent their real-world counterparts. This paper proposes and evaluates the addition of verifiers, which check real-world conditions and update network facts, to SONARR. This inclusion allows SONARR to retrieve fact values from its executing environment and update its network, providing a consistent method of ensuring that the operations and, therefore, the results align with the real-world systems being assessed. Verifiers allow arbitrary scripts and dynamic arguments to be added to normal SONARR operations. This provides a layer of flexibility and consistency that results in more reliable output from the software.
Abstract:This paper presents and evaluates work on the development of an artificial intelligence (AI) anti-bullying system. The system is designed to identify coordinated bullying attacks via social media and other mechanisms, characterize them and propose remediation and response activities to them. In particular, a large language model (LLM) is used to populate an enhanced expert system-based network model of a bullying attack. This facilitates analysis and remediation activity - such as generating report messages to social media companies - determination. The system is described and the efficacy of the LLM for populating the model is analyzed herein.
Abstract:A variety of forms of artificial intelligence systems have been developed. Two well-known techniques are neural networks and rule-fact expert systems. The former can be trained from presented data while the latter is typically developed by human domain experts. A combined implementation that uses gradient descent to train a rule-fact expert system has been previously proposed. A related system type, the Blackboard Architecture, adds an actualization capability to expert systems. This paper proposes and evaluates the incorporation of a defensible-style gradient descent training capability into the Blackboard Architecture. It also introduces the use of activation functions for defensible artificial intelligence systems and implements and evaluates a new best path-based training algorithm.
Abstract:The Blackboard Architecture provides a mechanism for storing data and logic and using it to make decisions that impact the application environment that the Blackboard Architecture network models. While rule-fact-action networks can represent numerous types of data, the relationships that can be easily modeled are limited by the propositional logic nature of the rule-fact network structure. This paper proposes and evaluates the inclusion of containers and links in the Blackboard Architecture. These objects are designed to allow them to model organizational, physical, spatial and other relationships that cannot be readily or efficiently implemented as Boolean logic rules. Containers group related facts together and can be nested to implement complex relationships. Links interconnect containers that have a relationship that is relevant to their organizational purpose. Both objects, together, facilitate new ways of using the Blackboard Architecture and enable or simply its use for complex tasks that have multiple types of relationships that need to be considered during operations.