Abstract:This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.