Abstract:Language models perform well on grammatical agreement, but it is unclear whether this reflects rule-based generalization or memorization. We study this question for German definite singular articles, whose forms depend on gender and case. Using GRADIEND, a gradient-based interpretability method, we learn parameter update directions for gender-case specific article transitions. We find that updates learned for a specific gender-case article transition frequently affect unrelated gender-case settings, with substantial overlap among the most affected neurons across settings. These results argue against a strictly rule-based encoding of German definite articles, indicating that models at least partly rely on memorized associations rather than abstract grammatical rules.
Abstract:Mathematical formulas are a fundamental and widely used component in various scientific fields, serving as a universal language for expressing complex concepts and relationships. While state-of-the-art transformer models excel in processing and understanding natural language, they encounter challenges with mathematical notation, which involves a complex structure and diverse representations. This study focuses on the development of specialized training datasets to enhance the encoding of mathematical content. We introduce Math Mutator (MAMUT), a framework capable of generating equivalent and falsified versions of a given mathematical formula in LaTeX notation, effectively capturing the mathematical variety in notation of the same concept. Based on MAMUT, we have generated four large mathematical datasets containing diverse notation, which can be used to train language models with enhanced mathematical embeddings.
Abstract:AI systems frequently exhibit and amplify social biases, including gender bias, leading to harmful consequences in critical areas. This study introduces a novel encoder-decoder approach that leverages model gradients to learn a single monosemantic feature neuron encoding gender information. We show that our method can be used to debias transformer-based language models, while maintaining other capabilities. We demonstrate the effectiveness of our approach across multiple encoder-only based models and highlight its potential for broader applications.