Abstract:We present a real-time tracking SLAM system that unifies efficient camera tracking with photorealistic feature-enriched mapping using 3D Gaussian Splatting (3DGS). Our main contribution is integrating dense feature rasterization into the novel-view synthesis, aligned with a visual foundation model. This yields strong semantics, going beyond basic RGB-D input, aiding both tracking and mapping accuracy. Unlike previous semantic SLAM approaches (which embed pre-defined class labels) FeatureSLAM enables entirely new downstream tasks via free-viewpoint, open-set segmentation. Across standard benchmarks, our method achieves real-time tracking, on par with state-of-the-art systems while improving tracking stability and map fidelity without prohibitive compute. Quantitatively, we obtain 9\% lower pose error and 8\% higher mapping accuracy compared to recent fixed-set SLAM baselines. Our results confirm that real-time feature-embedded SLAM, is not only valuable for enabling new downstream applications. It also improves the performance of the underlying tracking and mapping subsystems, providing semantic and language masking results that are on-par with offline 3DGS models, alongside state-of-the-art tracking, depth and RGB rendering.
Abstract:We introduce HyperGS, a novel framework for Hyperspectral Novel View Synthesis (HNVS), based on a new latent 3D Gaussian Splatting (3DGS) technique. Our approach enables simultaneous spatial and spectral renderings by encoding material properties from multi-view 3D hyperspectral datasets. HyperGS reconstructs high-fidelity views from arbitrary perspectives with improved accuracy and speed, outperforming currently existing methods. To address the challenges of high-dimensional data, we perform view synthesis in a learned latent space, incorporating a pixel-wise adaptive density function and a pruning technique for increased training stability and efficiency. Additionally, we introduce the first HNVS benchmark, implementing a number of new baselines based on recent SOTA RGB-NVS techniques, alongside the small number of prior works on HNVS. We demonstrate HyperGS's robustness through extensive evaluation of real and simulated hyperspectral scenes with a 14db accuracy improvement upon previously published models.