Abstract:We introduce an ultrahigh-resolution (50\mu m\) robotic micro-CT design for localized imaging of carotid plaques using robotic arms, cutting-edge detector, and machine learning technologies. To combat geometric error-induced artifacts in interior CT scans, we propose a data-driven geometry estimation method that maximizes the consistency between projection data and the reprojection counterparts of a reconstructed volume. Particularly, we use a normalized cross correlation metric to overcome the projection truncation effect. Our approach is validated on a robotic CT scan of a sacrificed mouse and a micro-CT phantom scan, both producing sharper images with finer details than that prior correction.
Abstract:Manipulating deformable objects arises in daily life and numerous applications. Despite phenomenal advances in industrial robotics, manipulation of deformable objects remains mostly a manual task. This is because of the high number of internal degrees of freedom and the complexity of predicting its motion. In this paper, we apply the computationally efficient position-based dynamics method to predict object motion and distance to obstacles. This distance is incorporated in a control barrier function for the resolved motion kinematic control for one or more robots to adjust their motion to avoid colliding with the obstacles. The controller has been applied in simulations to 1D and 2D deformable objects with varying numbers of assistant agents, demonstrating its versatility across different object types and multi-agent systems. Results indicate the feasibility of real-time collision avoidance through deformable object simulation, minimizing path tracking error while maintaining a predefined minimum distance from obstacles and preventing overstretching of the deformable object. The implementation is performed in ROS, allowing ready portability to different applications.
Abstract:Collaborative robots and space manipulators contain significant joint flexibility. It complicates the control design, compromises the control bandwidth, and limits the tracking accuracy. The imprecise knowledge of the flexible joint dynamics compounds the challenge. In this paper, we present a new control architecture for controlling flexible-joint robots. Our approach uses a multi-layer neural network to approximate unknown dynamics needed for the feedforward control. The network may be viewed as a linear-in-parameter representation of the robot dynamics, with the nonlinear basis of the robot dynamics connected to the linear output layer. The output layer weights are updated based on the tracking error and the nonlinear basis. The internal weights of the nonlinear basis are updated by online backpropagation to further reduce the tracking error. To use time scale separation to reduce the coupling of the two steps - the update of the internal weights is at a lower rate compared to the update of the output layer weights. With the update of the output layer weights, our controller adapts quickly to the unknown dynamics change and disturbances (such as attaching a load). The update of the internal weights would continue to improve the converge of the nonlinear basis functions. We show the stability of the proposed scheme under the "outer loop" control, where the commanded joint position is considered as the control input. Simulation and physical experiments are conducted to demonstrate the performance of the proposed controller on a Baxter robot, which exhibits significant joint flexibility due to the series-elastic joint actuators.