Abstract:As the number of devices connected to the Internet of Things (IoT) increases significantly, it leads to an exponential growth in the number of services that need to be processed and stored in the large-scale Cloud-based service repositories. An efficient service indexing model is critical for service retrieval and management of large-scale Cloud-based service repositories. The multilevel index model is the state-of-art service indexing model in recent years to improve service discovery and combination. This paper aims to optimize the model to consider the impact of unequal appearing probability of service retrieval request parameters and service input parameters on service retrieval and service addition operations. The least-used key selection method has been proposed to narrow the search scope of service retrieval and reduce its time. The experimental results show that the proposed least-used key selection method improves the service retrieval efficiency significantly compared with the designated key selection method in the case of the unequal appearing probability of parameters in service retrieval requests under three indexing models.
Abstract:With the development of Edge Computing and Artificial Intelligence (AI) technologies, edge devices are witnessed to generate data at unprecedented volume. The Edge Intelligence (EI) has led to the emergence of edge devices in various application domains. The EI can provide efficient services to delay-sensitive applications, where the edge devices are deployed as edge nodes to host the majority of execution, which can effectively manage services and improve service discovery efficiency. The multilevel index model is a well-known model used for indexing service, such a model is being introduced and optimized in the edge environments to efficiently services discovery whilst managing large volumes of data. However, effectively updating the multilevel index model by adding new services timely and precisely in the dynamic Edge Computing environments is still a challenge. Addressing this issue, this paper proposes a designated key selection method to improve the efficiency of adding services in the multilevel index models. Our experimental results show that in the partial index and the full index of multilevel index model, our method reduces the service addition time by around 84% and 76%, respectively when compared with the original key selection method and by around 78% and 66%, respectively when compared with the random selection method. Our proposed method significantly improves the service addition efficiency in the multilevel index model, when compared with existing state-of-the-art key selection methods, without compromising the service retrieval stability to any notable level.