Abstract:We present a method for recovering the structure of a plant directly from a small set of widely-spaced images. Structure recovery is more complex than shape estimation, but the resulting structure estimate is more closely related to phenotype than is a 3D geometric model. The method we propose is applicable to a wide variety of plants, but is demonstrated on wheat. Wheat is made up of thin elements with few identifiable features, making it difficult to analyse using standard feature matching techniques. Our method instead analyses the structure of plants using only their silhouettes. We employ a generate-and-test method, using a database of manually modelled leaves and a model for their composition to synthesise plausible plant structures which are evaluated against the images. The method is capable of efficiently recovering accurate estimates of plant structure in a wide variety of imaging scenarios, with no manual intervention.
Abstract:We propose a method to recover the structure of a compound object from multiple silhouettes. Structure is expressed as a collection of 3D primitives chosen from a pre-defined library, each with an associated pose. This has several advantages over a volume or mesh representation both for estimation and the utility of the recovered model. The main challenge in recovering such a model is the combinatorial number of possible arrangements of parts. We address this issue by exploiting the sparse nature of the problem, and show that our method scales to objects constructed from large libraries of parts.