Abstract:As global demand for fruits and vegetables continues to rise, the agricultural industry faces challenges in securing adequate labor. Robotic harvesting devices offer a promising solution to solve this issue. However, harvesting delicate fruits, notably blackberries, poses unique challenges due to their fragility. This study introduces and evaluates a prototype robotic gripper specifically designed for blackberry harvesting. The gripper features an innovative fabric tube mechanism employing motorized twisting action to gently envelop the fruit, ensuring uniform pressure application and minimizing damage. Three types of tubes were developed, varying in elasticity and compressibility using foam padding, spandex, and food-safe cotton cheesecloth. Performance testing focused on assessing each gripper's ability to detach and release blackberries, with emphasis on quantifying damage rates. Results indicate the proposed gripper achieved an 82% success rate in detaching blackberries and a 95% success rate in releasing them, showcasing the promised potential for robotic harvesting applications.