Abstract:Estimating treatment effects from observational data is paramount in healthcare, education, and economics, but current deep disentanglement-based methods to address selection bias are insufficiently handling irrelevant variables. We demonstrate in experiments that this leads to prediction errors. We disentangle pre-treatment variables with a deep embedding method and explicitly identify and represent irrelevant variables, additionally to instrumental, confounding and adjustment latent factors. To this end, we introduce a reconstruction objective and create an embedding space for irrelevant variables using an attached autoencoder. Instead of relying on serendipitous suppression of irrelevant variables as in previous deep disentanglement approaches, we explicitly force irrelevant variables into this embedding space and employ orthogonalization to prevent irrelevant information from leaking into the latent space representations of the other factors. Our experiments with synthetic and real-world benchmark datasets show that we can better identify irrelevant variables and more precisely predict treatment effects than previous methods, while prediction quality degrades less when additional irrelevant variables are introduced.
Abstract:Discovering all useful solutions for a given task is crucial for transferable RL agents, to account for changes in the task or transition dynamics. This is not considered by classical RL algorithms that are only concerned with finding the optimal policy, given the current task and dynamics. We propose a simple method for discovering all possible solutions of a given task, to obtain an agent that performs well in the transfer setting and adapts quickly to changes in the task or transition dynamics. Our method iteratively learns a set of policies, while each subsequent policy is constrained to yield a solution that is unlikely under all previous policies. Unlike prior methods, our approach does not require learning additional models for novelty detection and avoids balancing task and novelty reward signals, by directly incorporating the constraint into the action selection and optimization steps.
Abstract:Reinforcement learning (RL) for complex tasks remains a challenge, primarily due to the difficulties of engineering scalar reward functions and the inherent inefficiency of training models from scratch. Instead, it would be better to specify complex tasks in terms of elementary subtasks and to reuse subtask solutions whenever possible. In this work, we address continuous space lexicographic multi-objective RL problems, consisting of prioritized subtasks, which are notoriously difficult to solve. We show that these can be scalarized with a subtask transformation and then solved incrementally using value decomposition. Exploiting this insight, we propose prioritized soft Q-decomposition (PSQD), a novel algorithm for learning and adapting subtask solutions under lexicographic priorities in continuous state-action spaces. PSQD offers the ability to reuse previously learned subtask solutions in a zero-shot composition, followed by an adaptation step. Its ability to use retained subtask training data for offline learning eliminates the need for new environment interaction during adaptation. We demonstrate the efficacy of our approach by presenting successful learning, reuse, and adaptation results for both low- and high-dimensional simulated robot control tasks, as well as offline learning results. In contrast to baseline approaches, PSQD does not trade off between conflicting subtasks or priority constraints and satisfies subtask priorities during learning. PSQD provides an intuitive framework for tackling complex RL problems, offering insights into the inner workings of the subtask composition.