Abstract:Large Language Models (LLMs) have transformed task automation and content generation across various domains while incorporating safety filters to prevent misuse. We introduce a novel jailbreaking framework that employs distributed prompt processing combined with iterative refinements to bypass these safety measures, particularly in generating malicious code. Our architecture consists of four key modules: prompt segmentation, parallel processing, response aggregation, and LLM-based jury evaluation. Tested on 500 malicious prompts across 10 cybersecurity categories, the framework achieves a 73.2% Success Rate (SR) in generating malicious code. Notably, our comparative analysis reveals that traditional single-LLM judge evaluation overestimates SRs (93.8%) compared to our LLM jury system (73.2%), with manual verification confirming that single-judge assessments often accept incomplete implementations. Moreover, we demonstrate that our distributed architecture improves SRs by 12% over the non-distributed approach in an ablation study, highlighting both the effectiveness of distributed prompt processing and the importance of robust evaluation methodologies in assessing jailbreak attempts.
Abstract:Numerous studies have investigated methods for jailbreaking Large Language Models (LLMs) to generate harmful content. Typically, these methods are evaluated using datasets of malicious prompts designed to bypass security policies established by LLM providers. However, the generally broad scope and open-ended nature of existing datasets can complicate the assessment of jailbreaking effectiveness, particularly in specific domains, notably cybersecurity. To address this issue, we present and publicly release CySecBench, a comprehensive dataset containing 12662 prompts specifically designed to evaluate jailbreaking techniques in the cybersecurity domain. The dataset is organized into 10 distinct attack-type categories, featuring close-ended prompts to enable a more consistent and accurate assessment of jailbreaking attempts. Furthermore, we detail our methodology for dataset generation and filtration, which can be adapted to create similar datasets in other domains. To demonstrate the utility of CySecBench, we propose and evaluate a jailbreaking approach based on prompt obfuscation. Our experimental results show that this method successfully elicits harmful content from commercial black-box LLMs, achieving Success Rates (SRs) of 65% with ChatGPT and 88% with Gemini; in contrast, Claude demonstrated greater resilience with a jailbreaking SR of 17%. Compared to existing benchmark approaches, our method shows superior performance, highlighting the value of domain-specific evaluation datasets for assessing LLM security measures. Moreover, when evaluated using prompts from a widely used dataset (i.e., AdvBench), it achieved an SR of 78.5%, higher than the state-of-the-art methods.