Abstract:Using 3D CNNs on high resolution medical volumes is very computationally demanding, especially for large datasets like the UK Biobank which aims to scan 100,000 subjects. Here we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of the 3D volumes leads to reasonable test accuracy when predicting the age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 40 - 70 seconds using a single GPU, which is almost 100 times faster compared to a small 3D CNN. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.
Abstract:Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of attention during the last 10 years. Here we apply deep learning to derivatives from resting state fMRI data, and investigate how different 3D augmentation techniques affect the test accuracy. Specifically, we use resting state derivatives from 1,112 subjects in ABIDE preprocessed to train a 3D convolutional neural network (CNN) to perform the classification. Our results show that augmentation only provide minor improvements to the test accuracy.