Abstract:This work presents a new strategy for multi-class classification that requires no class-specific labels, but instead leverages pairwise similarity between examples, which is a weaker form of annotation. The proposed method, meta classification learning, optimizes a binary classifier for pairwise similarity prediction and through this process learns a multi-class classifier as a submodule. We formulate this approach, present a probabilistic graphical model for it, and derive a surprisingly simple loss function that can be used to learn neural network-based models. We then demonstrate that this same framework generalizes to the supervised, unsupervised cross-task, and semi-supervised settings. Our method is evaluated against state of the art in all three learning paradigms and shows a superior or comparable accuracy, providing evidence that learning multi-class classification without multi-class labels is a viable learning option.
Abstract:Neural network-based clustering has recently gained popularity, and in particular a constrained clustering formulation has been proposed to perform transfer learning and image category discovery using deep learning. The core idea is to formulate a clustering objective with pairwise constraints that can be used to train a deep clustering network; therefore the cluster assignments and their underlying feature representations are jointly optimized end-to-end. In this work, we provide a novel clustering formulation to address scalability issues of previous work in terms of optimizing deeper networks and larger amounts of categories. The proposed objective directly minimizes the negative log-likelihood of cluster assignment with respect to the pairwise constraints, has no hyper-parameters, and demonstrates improved scalability and performance on both supervised learning and unsupervised transfer learning.