Abstract:We present the findings of the Machine Learning Model Attribution Challenge. Fine-tuned machine learning models may derive from other trained models without obvious attribution characteristics. In this challenge, participants identify the publicly-available base models that underlie a set of anonymous, fine-tuned large language models (LLMs) using only textual output of the models. Contestants aim to correctly attribute the most fine-tuned models, with ties broken in the favor of contestants whose solutions use fewer calls to the fine-tuned models' API. The most successful approaches were manual, as participants observed similarities between model outputs and developed attribution heuristics based on public documentation of the base models, though several teams also submitted automated, statistical solutions.
Abstract:With millimeter wave wireless communications, the resulting radiation reflects on most visible objects, creating rich multipath environments, namely in urban scenarios. The radiation captured by a listening device is thus shaped by the obstacles encountered, which carry latent information regarding their relative positions. In this paper, a system to convert the received millimeter wave radiation into the device's position is proposed, making use of the aforementioned hidden information. Using deep learning techniques and a pre-established codebook of beamforming patterns transmitted by a base station, the simulations show that average estimation errors below 10 meters are achievable in realistic outdoors scenarios that contain mostly non-line-of-sight positions, paving the way for new positioning systems.