Abstract:The breakthrough in AI and Machine Learning has brought a new revolution in robotics, resulting in the construction of more sophisticated robotic systems. Not only can these robotic systems benefit all domains, but also can accomplish tasks that seemed to be unimaginable a few years ago. From swarms of autonomous small robots working together to more very heavy and large objects, to seemingly indestructible robots capable of going to the harshest environments, we can see robotic systems designed for every task imaginable. Among them, a key scenario where robotic systems can benefit is in disaster response scenarios and rescue operations. Robotic systems are capable of successfully conducting tasks such as removing heavy materials, utilizing multiple advanced sensors for finding objects of interest, moving through debris and various inhospitable environments, and not the least have flying capabilities. Even with so much potential, we rarely see the utilization of robotic systems in disaster response scenarios and rescue missions. Many factors could be responsible for the low utilization of robotic systems in such scenarios. One of the key factors involve challenges related to Human-Robot Interaction (HRI) issues. Therefore, in this paper, we try to understand the HRI challenges involving the utilization of robotic systems in disaster response and rescue operations. Furthermore, we go through some of the proposed robotic systems designed for disaster response scenarios and identify the HRI challenges of those systems. Finally, we try to address the challenges by introducing ideas from various proposed research works.
Abstract:In multi-task learning (MTL), we improve the performance of key machine learning algorithms by training various tasks jointly. When the number of tasks is large, modeling task structure can further refine the task relationship model. For example, often tasks can be grouped based on metadata, or via simple preprocessing steps like K-means. In this paper, we present our group structured latent-space multi-task learning model, which encourages group structured tasks defined by prior information. We use an alternating minimization method to learn the model parameters. Experiments are conducted on both synthetic and real-world datasets, showing competitive performance over single-task learning (where each group is trained separately) and other MTL baselines.