Abstract:Micro-video recommendation is attracting global attention and becoming a popular daily service for people of all ages. Recently, Graph Neural Networks-based micro-video recommendation has displayed performance improvement for many kinds of recommendation tasks. However, the existing works fail to fully consider the characteristics of micro-videos, such as the high timeliness of news nature micro-video recommendation and sequential interactions of frequently changed interests. In this paper, a novel Multi-aggregator Time-warping Heterogeneous Graph Neural Network (MTHGNN) is proposed for personalized news nature micro-video recommendation based on sequential sessions, where characteristics of micro-videos are comprehensively studied, users' preference is mined via multi-aggregator, the temporal and dynamic changes of users' preference are captured, and timeliness is considered. Through the comparison with the state-of-the-arts, the experimental results validate the superiority of our MTHGNN model.
Abstract:Current recommendation systems recommend goods by considering users' historical behaviors, social relations, ratings, and other multi-modals. Although outdated user information presents the trends of a user's interests, no recommendation system can know the users' real-time thoughts indeed. With the development of brain-computer interfaces, it is time to explore next-generation recommenders that show users' real-time thoughts without delay. Electroencephalography (EEG) is a promising method of collecting brain signals because of its convenience and mobility. Currently, there is only few research on EEG-based recommendations due to the complexity of learning human brain activity. To explore the utility of EEG-based recommendation, we propose a novel neural network model, QUARK, combining Quantum Cognition Theory and Graph Convolutional Networks for accurate item recommendations. Compared with the state-of-the-art recommendation models, the superiority of QUARK is confirmed via extensive experiments.