Abstract:Unmanned warehouses are an important part of logistics, and improving their operational efficiency can effectively enhance service efficiency. However, due to the complexity of unmanned warehouse systems and their susceptibility to errors, incidents may occur during their operation, most often in inbound and outbound operations, which can decrease operational efficiency. Hence it is crucial to to improve the response to such incidents. This paper proposes a collaborative optimization algorithm for emergent incident response based on Safe-MADDPG. To meet safety requirements during emergent incident response, we investigated the intrinsic hidden relationships between various factors. By obtaining constraint information of agents during the emergent incident response process and of the dynamic environment of unmanned warehouses on agents, the algorithm reduces safety risks and avoids the occurrence of chain accidents; this enables an unmanned system to complete emergent incident response tasks and achieve its optimization objectives: (1) minimizing the losses caused by emergent incidents; and (2) maximizing the operational efficiency of inbound and outbound operations during the response process. A series of experiments conducted in a simulated unmanned warehouse scenario demonstrate the effectiveness of the proposed method.