Abstract:Fault diagnosis plays a crucial role in maintaining the operational integrity of mechanical systems, preventing significant losses due to unexpected failures. As intelligent manufacturing and data-driven approaches evolve, Deep Learning (DL) has emerged as a pivotal technique in fault diagnosis research, recognized for its ability to autonomously extract complex features. However, the practical application of current fault diagnosis methods is challenged by the complexity of industrial environments. This paper proposed the Temporal Denoise Convolutional Neural Network With Attention (TDANet), designed to improve fault diagnosis performance in noise environments. This model transforms one-dimensional signals into two-dimensional tensors based on their periodic properties, employing multi-scale 2D convolution kernels to extract signal information both within and across periods. This method enables effective identification of signal characteristics that vary over multiple time scales. The TDANet incorporates a Temporal Variable Denoise (TVD) module with residual connections and a Multi-head Attention Fusion (MAF) module, enhancing the saliency of information within noisy data and maintaining effective fault diagnosis performance. Evaluation on two datasets, CWRU (single sensor) and Real aircraft sensor fault (multiple sensors), demonstrates that the TDANet model significantly outperforms existing deep learning approaches in terms of diagnostic accuracy under noisy environments.
Abstract:Deep transfer learning (DTL) is a fundamental method in the field of Intelligent Fault Detection (IFD). It aims to mitigate the degradation of method performance that arises from the discrepancies in data distribution between training set (source domain) and testing set (target domain). Considering the fact that fault data collection is challenging and certain faults are scarce, DTL-based methods face the limitation of available observable data, which reduces the detection performance of the methods in the target domain. Furthermore, DTL-based methods lack comprehensive uncertainty analysis that is essential for building reliable IFD systems. To address the aforementioned problems, this paper proposes a novel DTL-based method known as Neural Processes-based deep transfer learning with graph convolution network (GTNP). Feature-based transfer strategy of GTNP bridges the data distribution discrepancies of source domain and target domain in high-dimensional space. Both the joint modeling based on global and local latent variables and sparse sampling strategy reduce the demand of observable data in the target domain. The multi-scale uncertainty analysis is obtained by using the distribution characteristics of global and local latent variables. Global analysis of uncertainty enables GTNP to provide quantitative values that reflect the complexity of methods and the difficulty of tasks. Local analysis of uncertainty allows GTNP to model uncertainty (confidence of the fault detection result) at each sample affected by noise and bias. The validation of the proposed method is conducted across 3 IFD tasks, consistently showing the superior detection performance of GTNP compared to the other DTL-based methods.