Abstract:This paper introduces a model based upon games on an evolving network, and develops three clustering algorithms according to it. In the clustering algorithms, data points for clustering are regarded as players who can make decisions in games. On the network describing relationships among data points, an edge-removing-and-rewiring (ERR) function is employed to explore in a neighborhood of a data point, which removes edges connecting to neighbors with small payoffs, and creates new edges to neighbors with larger payoffs. As such, the connections among data points vary over time. During the evolution of network, some strategies are spread in the network. As a consequence, clusters are formed automatically, in which data points with the same evolutionarily stable strategy are collected as a cluster, so the number of evolutionarily stable strategies indicates the number of clusters. Moreover, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the comparison with other algorithms also provides an indication of the effectiveness of the proposed algorithms.
Abstract:Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
Abstract:We have proposed a model based upon flocking on a complex network, and then developed two clustering algorithms on the basis of it. In the algorithms, firstly a \textit{k}-nearest neighbor (knn) graph as a weighted and directed graph is produced among all data points in a dataset each of which is regarded as an agent who can move in space, and then a time-varying complex network is created by adding long-range links for each data point. Furthermore, each data point is not only acted by its \textit{k} nearest neighbors but also \textit{r} long-range neighbors through fields established in space by them together, so it will take a step along the direction of the vector sum of all fields. It is more important that these long-range links provides some hidden information for each data point when it moves and at the same time accelerate its speed converging to a center. As they move in space according to the proposed model, data points that belong to the same class are located at a same position gradually, whereas those that belong to different classes are away from one another. Consequently, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the rates of convergence of clustering algorithms are fast enough. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
Abstract:The enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum random walk (QRW) with the problem of data clustering, and develop two clustering algorithms based on the one dimensional QRW. Then, the probability distributions on the positions induced by QRW in these algorithms are investigated, which also indicates the possibility of obtaining better results. Consequently, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms are of fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
Abstract:We introduce a modified model of random walk, and then develop two novel clustering algorithms based on it. In the algorithms, each data point in a dataset is considered as a particle which can move at random in space according to the preset rules in the modified model. Further, this data point may be also viewed as a local control subsystem, in which the controller adjusts its transition probability vector in terms of the feedbacks of all data points, and then its transition direction is identified by an event-generating function. Finally, the positions of all data points are updated. As they move in space, data points collect gradually and some separating parts emerge among them automatically. As a consequence, data points that belong to the same class are located at a same position, whereas those that belong to different classes are away from one another. Moreover, the experimental results have demonstrated that data points in the test datasets are clustered reasonably and efficiently, and the comparison with other algorithms also provides an indication of the effectiveness of the proposed algorithms.