Abstract:Graph Neural networks (GNNs) have been applied in many scenarios due to the superior performance of graph learning. However, fairness is always ignored when designing GNNs. As a consequence, biased information in training data can easily affect vanilla GNNs, causing biased results toward particular demographic groups (divided by sensitive attributes, such as race and age). There have been efforts to address the fairness issue. However, existing fair techniques generally divide the demographic groups by raw sensitive attributes and assume that are fixed. The biased information correlated with raw sensitive attributes will run through the training process regardless of the implemented fair techniques. It is urgent to resolve this problem for training fair GNNs. To tackle this problem, we propose a brand new framework, FairMigration, which can dynamically migrate the demographic groups instead of keeping that fixed with raw sensitive attributes. FairMigration is composed of two training stages. In the first stage, the GNNs are initially optimized by personalized self-supervised learning, and the demographic groups are adjusted dynamically. In the second stage, the new demographic groups are frozen and supervised learning is carried out under the constraints of new demographic groups and adversarial training. Extensive experiments reveal that FairMigration balances model performance and fairness well.
Abstract:Anomaly detection on attributed graphs is a crucial topic for its practical application. Existing methods suffer from semantic mixture and imbalance issue because they mainly focus on anomaly discrimination, ignoring representation learning. It conflicts with the assortativity assumption that anomalous nodes commonly connect with normal nodes directly. Additionally, there are far fewer anomalous nodes than normal nodes, indicating a long-tailed data distribution. To address these challenges, a unique algorithm,Decoupled Self-supervised Learning forAnomalyDetection (DSLAD), is proposed in this paper. DSLAD is a self-supervised method with anomaly discrimination and representation learning decoupled for anomaly detection. DSLAD employs bilinear pooling and masked autoencoder as the anomaly discriminators. By decoupling anomaly discrimination and representation learning, a balanced feature space is constructed, in which nodes are more semantically discriminative, as well as imbalance issue can be resolved. Experiments conducted on various six benchmark datasets reveal the effectiveness of DSLAD.