Abstract:As Earth science enters the era of big data, artificial intelligence (AI) not only offers great potential for solving geoscience problems, but also plays a critical role in accelerating the understanding of the complex, interactive, and multiscale processes of Earth's behavior. As geoscience AI models are progressively utilized for significant predictions in crucial situations, geoscience researchers are increasingly demanding their interpretability and versatility. This study proposes an interpretable geoscience artificial intelligence (XGeoS-AI) framework to unravel the mystery of image recognition in the Earth sciences, and its effectiveness and versatility is demonstrated by taking computed tomography (CT) image recognition as an example. Inspired by the mechanism of human vision, the proposed XGeoS-AI framework generates a threshold value from a local region within the whole image to complete the recognition. Different kinds of artificial intelligence (AI) methods, such as Support Vector Regression (SVR), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), can be adopted as the AI engines of the proposed XGeoS-AI framework to efficiently complete geoscience image recognition tasks. Experimental results demonstrate that the effectiveness, versatility, and heuristics of the proposed framework have great potential in solving geoscience image recognition problems. Interpretable AI should receive more and more attention in the field of the Earth sciences, which is the key to promoting more rational and wider applications of AI in the field of Earth sciences. In addition, the proposed interpretable framework may be the forerunner of technological innovation in the Earth sciences.
Abstract:Geoscience foundation models represent a revolutionary approach in the field of Earth sciences by integrating massive cross-disciplinary data to simulate and understand the Earth systems dynamics. As a data-centric artificial intelligence (AI) paradigm, they uncover insights from petabytes of structured and unstructured data. Flexible task specification, diverse inputs and outputs and multi-modal knowledge representation enable comprehensive analysis infeasible with individual data sources. Critically, the scalability and generalizability of geoscience models allow for tackling diverse prediction, simulation, and decision challenges related to Earth systems interactions. Collaboration between domain experts and computer scientists leads to innovations in these invaluable tools for understanding the past, present, and future of our planet. However, challenges remain in validation and verification, scale, interpretability, knowledge representation, and social bias. Going forward, enhancing model integration, resolution, accuracy, and equity through cross-disciplinary teamwork is key. Despite current limitations, geoscience foundation models show promise for providing critical insights into pressing issues including climate change, natural hazards, and sustainability through their ability to probe scenarios and quantify uncertainties. Their continued evolution toward integrated, data-driven modeling holds paradigm-shifting potential for Earth science.