Abstract:In the realm of graph learning, there is a category of methods that conceptualize graphs as hierarchical structures, utilizing node clustering to capture broader structural information. While generally effective, these methods often rely on a fixed graph coarsening routine, leading to overly homogeneous cluster representations and loss of node-level information. In this paper, we envision the graph as a network of interconnected node sets without compressing each cluster into a single embedding. To enable effective information transfer among these node sets, we propose the Node-to-Cluster Attention (N2C-Attn) mechanism. N2C-Attn incorporates techniques from Multiple Kernel Learning into the kernelized attention framework, effectively capturing information at both node and cluster levels. We then devise an efficient form for N2C-Attn using the cluster-wise message-passing framework, achieving linear time complexity. We further analyze how N2C-Attn combines bi-level feature maps of queries and keys, demonstrating its capability to merge dual-granularity information. The resulting architecture, Cluster-wise Graph Transformer (Cluster-GT), which uses node clusters as tokens and employs our proposed N2C-Attn module, shows superior performance on various graph-level tasks. Code is available at https://github.com/LUMIA-Group/Cluster-wise-Graph-Transformer.
Abstract:Attention mechanisms have made significant strides in graph learning, yet they still exhibit notable limitations: local attention faces challenges in capturing long-range information due to the inherent problems of the message-passing scheme, while global attention cannot reflect the hierarchical neighborhood structure and fails to capture fine-grained local information. In this paper, we propose a novel multi-hop graph attention mechanism, named Subtree Attention (STA), to address the aforementioned issues. STA seamlessly bridges the fully-attentional structure and the rooted subtree, with theoretical proof that STA approximates the global attention under extreme settings. By allowing direct computation of attention weights among multi-hop neighbors, STA mitigates the inherent problems in existing graph attention mechanisms. Further we devise an efficient form for STA by employing kernelized softmax, which yields a linear time complexity. Our resulting GNN architecture, the STAGNN, presents a simple yet performant STA-based graph neural network leveraging a hop-aware attention strategy. Comprehensive evaluations on ten node classification datasets demonstrate that STA-based models outperform existing graph transformers and mainstream GNNs. The code is available at https://github.com/LUMIA-Group/SubTree-Attention.