Abstract:Motion artifact is a major challenge in magnetic resonance imaging (MRI) that severely degrades image quality, reduces examination efficiency, and makes accurate diagnosis difficult. However, previous methods often relied on implicit models for artifact correction, resulting in biases in modeling the artifact formation mechanism and characterizing the relationship between artifact information and anatomical details. These limitations have hindered the ability to obtain high-quality MR images. In this work, we incorporate the artifact generation mechanism to reestablish the relationship between artifacts and anatomical content in the image domain, highlighting the superiority of explicit models over implicit models in medical problems. Based on this, we propose a novel end-to-end image domain model called AF2R, which addresses this problem using conditional normalization flow. Specifically, we first design a feature encoder to extract anatomical features from images with motion artifacts. Then, through a series of reversible transformations using the feature-to-image flow module, we progressively obtain MR images unaffected by motion artifacts. Experimental results on simulated and real datasets demonstrate that our method achieves better performance in both quantitative and qualitative results, preserving better anatomical details.
Abstract:Metal artifacts is a major challenge in computed tomography (CT) imaging, significantly degrading image quality and making accurate diagnosis difficult. However, previous methods either require prior knowledge of the location of metal implants, or have modeling deviations with the mechanism of artifact formation, which limits the ability to obtain high-quality CT images. In this work, we formulate metal artifacts reduction problem as a combination of decomposition and completion tasks. And we propose RetinexFlow, which is a novel end-to-end image domain model based on Retinex theory and conditional normalizing flow, to solve it. Specifically, we first design a feature decomposition encoder for decomposing the metal implant component and inherent component, and extracting the inherent feature. Then, it uses a feature-to-image flow module to complete the metal artifact-free CT image step by step through a series of invertible transformations. These designs are incorporated in our model with a coarse-to-fine strategy, enabling it to achieve superior performance. The experimental results on on simulation and clinical datasets show our method achieves better quantitative and qualitative results, exhibiting better visual performance in artifact removal and image fidelity