Abstract:We developed a robust solution for real-time 6D object detection in industrial applications by integrating FoundationPose, SAM2, and LightGlue, eliminating the need for retraining. Our approach addresses two key challenges: the requirement for an initial object mask in the first frame in FoundationPose and issues with tracking loss and automatic rotation for symmetric objects. The algorithm requires only a CAD model of the target object, with the user clicking on its location in the live feed during the initial setup. Once set, the algorithm automatically saves a reference image of the object and, in subsequent runs, employs LightGlue for feature matching between the object and the real-time scene, providing an initial prompt for detection. Tested on the YCB dataset and industrial components such as bleach cleanser and gears, the algorithm demonstrated reliable 6D detection and tracking. By integrating SAM2 and FoundationPose, we effectively mitigated common limitations such as the problem of tracking loss, ensuring continuous and accurate tracking under challenging conditions like occlusion or rapid movement.
Abstract:Word embedding has become ubiquitous and is widely used in various text mining and natural language processing (NLP) tasks, such as information retrieval, semantic analysis, and machine translation, among many others. Unfortunately, it is prohibitively expensive to train the word embedding in a relatively large corpus. We propose a graph-based word embedding algorithm, called Word-Graph2vec, which converts the large corpus into a word co-occurrence graph, then takes the word sequence samples from this graph by randomly traveling and trains the word embedding on this sampling corpus in the end. We posit that because of the stable vocabulary, relative idioms, and fixed expressions in English, the size and density of the word co-occurrence graph change slightly with the increase in the training corpus. So that Word-Graph2vec has stable runtime on the large scale data set, and its performance advantage becomes more and more obvious with the growth of the training corpus. Extensive experiments conducted on real-world datasets show that the proposed algorithm outperforms traditional Skip-Gram by four-five times in terms of efficiency, while the error generated by the random walk sampling is small.