Abstract:Federated Learning allows remote centralized server training models without to access the data stored in distributed (edge) devices. Most work assume the data generated from edge devices is identically and independently sampled from a common population distribution. However, such ideal sampling may not be realistic in many contexts where edge devices correspond to units in variable context. Also, models based on intrinsic agency, such as active sampling schemes, may lead to highly biased sampling. So an imminent question is how robust Federated Learning is to biased sampling? In this work, we investigate two such scenarios. First, we study Federated Learning of a classifier from data with edge device class distribution heterogeneity. Second, we study Federated Learning of a classifier with active sampling at the edge. We present evidence in both scenarios, that federated learning is robust to data heterogeneity.
Abstract:Industry 4.0 becomes possible through the convergence between Operational and Information Technologies. All the requirements to realize the convergence is integrated on the Fog Platform. Fog Platform is introduced between the cloud server and edge devices when the unprecedented generation of data causes the burden of the cloud server, leading the ineligible latency. In this new paradigm, we divide the computation tasks and push it down to edge devices. Furthermore, local computing (at edge side) may improve privacy and trust. To address these problems, we present a new method, in which we decompose the data aggregation and processing, by dividing them between edge devices and fog nodes intelligently. We apply active learning on edge devices; and federated learning on the fog node which significantly reduces the data samples to train the model as well as the communication cost. To show the effectiveness of the proposed method, we implemented and evaluated its performance for an image classification task. In addition, we consider two settings: massively distributed and non-massively distributed and offer the corresponding solutions.