Abstract:Node classification is an important task to solve in graph-based learning. Even though a lot of work has been done in this field, imbalance is neglected. Real-world data is not perfect, and is imbalanced in representations most of the times. Apart from text and images, data can be represented using graphs, and thus addressing the imbalance in graphs has become of paramount importance. In the context of node classification, one class has less examples than others. Changing data composition is a popular way to address the imbalance in node classification. This is done by resampling the data to balance the dataset. However, that can sometimes lead to loss of information or add noise to the dataset. Therefore, in this work, we implicitly solve the problem by changing the model loss. Specifically, we study how attention networks can help tackle imbalance. Moreover, we observe that using a regularizer to assign larger weights to minority nodes helps to mitigate this imbalance. We achieve State of the Art results than the existing methods on several standard citation benchmark datasets.
Abstract:Automated medical coding is a process of codifying clinical notes to appropriate diagnosis and procedure codes automatically from the standard taxonomies such as ICD (International Classification of Diseases) and CPT (Current Procedure Terminology). The manual coding process involves the identification of entities from the clinical notes followed by querying a commercial or non-commercial medical codes Information Retrieval (IR) system that follows the Centre for Medicare and Medicaid Services (CMS) guidelines. We propose to automate this manual process by automatically constructing a query for the IR system using the entities auto-extracted from the clinical notes. We propose \textbf{GrabQC}, a \textbf{Gra}ph \textbf{b}ased \textbf{Q}uery \textbf{C}ontextualization method that automatically extracts queries from the clinical text, contextualizes the queries using a Graph Neural Network (GNN) model and obtains the ICD Codes using an external IR system. We also propose a method for labelling the dataset for training the model. We perform experiments on two datasets of clinical text in three different setups to assert the effectiveness of our approach. The experimental results show that our proposed method is better than the compared baselines in all three settings.