Abstract:When characterizing materials, it can be important to not only predict their mechanical properties, but also to estimate the probability distribution of these properties across a set of samples. Constitutive neural networks allow for the automated discovery of constitutive models that exactly satisfy physical laws given experimental testing data, but are only capable of predicting the mean stress response. Stochastic methods treat each weight as a random variable and are capable of learning their probability distributions. Bayesian constitutive neural networks combine both methods, but their weights lack physical interpretability and we must sample each weight from a probability distribution to train or evaluate the model. Here we introduce a more interpretable network with fewer parameters, simpler training, and the potential to discover correlated weights: Gaussian constitutive neural networks. We demonstrate the performance of our new Gaussian network on biaxial testing data, and discover a sparse and interpretable four-term model with correlated weights. Importantly, the discovered distributions of material parameters across a set of samples can serve as priors to discover better constitutive models for new samples with limited data. We anticipate that Gaussian constitutive neural networks are a natural first step towards generative constitutive models informed by physical laws and parameter uncertainty.
Abstract:Sparse regression and feature extraction are the cornerstones of knowledge discovery from massive data. Their goal is to discover interpretable and predictive models that provide simple relationships among scientific variables. While the statistical tools for model discovery are well established in the context of linear regression, their generalization to nonlinear regression in material modeling is highly problem-specific and insufficiently understood. Here we explore the potential of neural networks for automatic model discovery and induce sparsity by a hybrid approach that combines two strategies: regularization and physical constraints. We integrate the concept of Lp regularization for subset selection with constitutive neural networks that leverage our domain knowledge in kinematics and thermodynamics. We train our networks with both, synthetic and real data, and perform several thousand discovery runs to infer common guidelines and trends: L2 regularization or ridge regression is unsuitable for model discovery; L1 regularization or lasso promotes sparsity, but induces strong bias; only L0 regularization allows us to transparently fine-tune the trade-off between interpretability and predictability, simplicity and accuracy, and bias and variance. With these insights, we demonstrate that Lp regularized constitutive neural networks can simultaneously discover both, interpretable models and physically meaningful parameters. We anticipate that our findings will generalize to alternative discovery techniques such as sparse and symbolic regression, and to other domains such as biology, chemistry, or medicine. Our ability to automatically discover material models from data could have tremendous applications in generative material design and open new opportunities to manipulate matter, alter properties of existing materials, and discover new materials with user-defined properties.