Abstract:This paper introduces a novel mechanical multiplexing system powered by electrostatic capstan clutches, enabling high-force, single-motor control of multiple degrees of freedom (DoF). The system is capable of both bidirectional single-input single-output time-division and single-input multiple-output multiplexing to actuate a commercial 4-DoF robotic hand with a single motor. Our mechanical multiplexer is also capable of powerless position holding owing to its use of a leadscrew nut acting as the output. Experimental results demonstrate the effectiveness of this approach, achieving individual and simultaneous actuation. This innovation offers a scalable solution for high-DoF robotic systems, providing a path to efficient actuation in robotic platforms.
Abstract:In many robotic systems, the holding state consumes power, limits operating time, and increases operating costs. Electrostatic clutches have the potential to improve robotic performance by generating holding torques with low power consumption. The key limitation of electrostatic clutches has been their limited ability to generate the holding torques, or high specific shear stresses needed in many applications. Here we show how combining the Johnsen-Rahbek (JR) effect with the exponential tension scaling capstan effect can produce clutches with the highest specific shear stress in the literature. Our system generated 31.3 N/cm^2 sheer stress and a total holding torque of 7.1 Nm while consuming only 2.5 mW/cm^2 at 500 V. We demonstrate a theoretical model of an electrostatic adhesive capstan clutch and demonstrate how large angle (theta > 2 pi) designs increase efficiency over planar or small angle (theta < pi) clutch designs. We also report the first unfilled polymeric material, polybenzimidazole (PBI), to exhibit the JR-effect.