Abstract:Accurate histopathologic interpretation is key for clinical decision-making; however, current deep learning models for digital pathology are often overconfident and poorly calibrated in out-of-distribution (OOD) settings, which limit trust and clinical adoption. Safety-critical medical imaging workflows benefit from intrinsic uncertainty-aware properties that can accurately reject OOD input. We implement the Spectral-normalized Neural Gaussian Process (SNGP), a set of lightweight modifications that apply spectral normalization and replace the final dense layer with a Gaussian process layer to improve single-model uncertainty estimation and OOD detection. We evaluate SNGP vs. deterministic and MonteCarlo dropout on six datasets across three biomedical classification tasks: white blood cells, amyloid plaques, and colorectal histopathology. SNGP has comparable in-distribution performance while significantly improving uncertainty estimation and OOD detection. Thus, SNGP or related models offer a useful framework for uncertainty-aware classification in digital pathology, supporting safe deployment and building trust with pathologists.
Abstract:Foundation vision or vision-language models are trained on large unlabeled or noisy data and learn robust representations that can achieve impressive zero- or few-shot performance on diverse tasks. Given these properties, they are a natural fit for active learning (AL), which aims to maximize labeling efficiency, but the full potential of foundation models has not been explored in the context of AL, specifically in the low-budget regime. In this work, we evaluate how foundation models influence three critical components of effective AL, namely, 1) initial labeled pool selection, 2) ensuring diverse sampling, and 3) the trade-off between representative and uncertainty sampling. We systematically study how the robust representations of foundation models (DINOv2, OpenCLIP) challenge existing findings in active learning. Our observations inform the principled construction of a new simple and elegant AL strategy that balances uncertainty estimated via dropout with sample diversity. We extensively test our strategy on many challenging image classification benchmarks, including natural images as well as out-of-domain biomedical images that are relatively understudied in the AL literature. Source code will be made available.