Abstract:This is the Proceedings of the ACII Affective Vocal Bursts Workshop and Competition (A-VB). A-VB was a workshop-based challenge that introduces the problem of understanding emotional expression in vocal bursts -- a wide range of non-verbal vocalizations that includes laughs, grunts, gasps, and much more. With affective states informing both mental and physical wellbeing, the core focus of the A-VB workshop was the broader discussion of current strategies in affective computing for modeling vocal emotional expression. Within this first iteration of the A-VB challenge, the participants were presented with four emotion-focused sub-challenges that utilize the large-scale and `in-the-wild' Hume-VB dataset. The dataset and the four sub-challenges draw attention to new innovations in emotion science as it pertains to vocal expression, addressing low- and high-dimensional theories of emotional expression, cultural variation, and `call types' (laugh, cry, sigh, etc.).
Abstract:The ACII Affective Vocal Bursts Workshop & Competition is focused on understanding multiple affective dimensions of vocal bursts: laughs, gasps, cries, screams, and many other non-linguistic vocalizations central to the expression of emotion and to human communication more generally. This year's competition comprises four tracks using a large-scale and in-the-wild dataset of 59,299 vocalizations from 1,702 speakers. The first, the A-VB-High task, requires competition participants to perform a multi-label regression on a novel model for emotion, utilizing ten classes of richly annotated emotional expression intensities, including; Awe, Fear, and Surprise. The second, the A-VB-Two task, utilizes the more conventional 2-dimensional model for emotion, arousal, and valence. The third, the A-VB-Culture task, requires participants to explore the cultural aspects of the dataset, training native-country dependent models. Finally, for the fourth task, A-VB-Type, participants should recognize the type of vocal burst (e.g., laughter, cry, grunt) as an 8-class classification. This paper describes the four tracks and baseline systems, which use state-of-the-art machine learning methods. The baseline performance for each track is obtained by utilizing an end-to-end deep learning model and is as follows: for A-VB-High, a mean (over the 10-dimensions) Concordance Correlation Coefficient (CCC) of 0.5687 CCC is obtained; for A-VB-Two, a mean (over the 2-dimensions) CCC of 0.5084 is obtained; for A-VB-Culture, a mean CCC from the four cultures of 0.4401 is obtained; and for A-VB-Type, the baseline Unweighted Average Recall (UAR) from the 8-classes is 0.4172 UAR.