Abstract:Business Document Information Extraction (BDIE) is the problem of transforming a blob of unstructured information (raw text, scanned documents, etc.) into a structured format that downstream systems can parse and use. It has two main tasks: Key-Information Extraction (KIE) and Line Items Recognition (LIR). In this paper, we argue that BDIE is best modeled as a Tool Use problem, where the tools are these downstream systems. We then present Retrieval Augmented Structured Generation (RASG), a novel general framework for BDIE that achieves state of the art (SOTA) results on both KIE and LIR tasks on BDIE benchmarks. The contributions of this paper are threefold: (1) We show, with ablation benchmarks, that Large Language Models (LLMs) with RASG are already competitive with or surpasses current SOTA Large Multimodal Models (LMMs) without RASG on BDIE benchmarks. (2) We propose a new metric class for Line Items Recognition, General Line Items Recognition Metric (GLIRM), that is more aligned with practical BDIE use cases compared to existing metrics, such as ANLS*, DocILE, and GriTS. (3) We provide a heuristic algorithm for backcalculating bounding boxes of predicted line items and tables without the need for vision encoders. Finally, we claim that, while LMMs might sometimes offer marginal performance benefits, LLMs + RASG is oftentimes superior given real-world applications and constraints of BDIE.
Abstract:A binary's behavior is greatly influenced by how the compiler builds its source code. Although most compiler configuration details are abstracted away during compilation, recovering them is useful for reverse engineering and program comprehension tasks on unknown binaries, such as code similarity detection. We observe that previous work has thoroughly explored this on x86-64 binaries. However, there has been limited investigation of ARM binaries, which are increasingly prevalent. In this paper, we extend previous work with a shallow-learning model that efficiently and accurately recovers compiler configuration properties for ARM binaries. We apply opcode and register-derived features, that have previously been effective on x86-64 binaries, to ARM binaries. Furthermore, we compare this work with Pizzolotto et al., a recent architecture-agnostic model that uses deep learning, whose dataset and code are available. We observe that the lightweight features are reproducible on ARM binaries. We achieve over 99% accuracy, on par with state-of-the-art deep learning approaches, while achieving a 583-times speedup during training and 3,826-times speedup during inference. Finally, we also discuss findings of overfitting that was previously undetected in prior work.