Abstract:A new method to solve computationally challenging (random) parametric obstacle problems is developed and analyzed, where the parameters can influence the related partial differential equation (PDE) and determine the position and surface structure of the obstacle. As governing equation, a stationary elliptic diffusion problem is assumed. The high-dimensional solution of the obstacle problem is approximated by a specifically constructed convolutional neural network (CNN). This novel algorithm is inspired by a finite element constrained multigrid algorithm to represent the parameter to solution map. This has two benefits: First, it allows for efficient practical computations since multi-level data is used as an explicit output of the NN thanks to an appropriate data preprocessing. This improves the efficacy of the training process and subsequently leads to small errors in the natural energy norm. Second, the comparison of the CNN to a multigrid algorithm provides means to carry out a complete a priori convergence and complexity analysis of the proposed NN architecture. Numerical experiments illustrate a state-of-the-art performance for this challenging problem.
Abstract:To solve high-dimensional parameter-dependent partial differential equations (pPDEs), a neural network architecture is presented. It is constructed to map parameters of the model data to corresponding finite element solutions. To improve training efficiency and to enable control of the approximation error, the network mimics an adaptive finite element method (AFEM). It outputs a coarse grid solution and a series of corrections as produced in an AFEM, allowing a tracking of the error decay over successive layers of the network. The observed errors are measured by a reliable residual based a posteriori error estimator, enabling the reduction to only few parameters for the approximation in the output of the network. This leads to a problem adapted representation of the solution on locally refined grids. Furthermore, each solution of the AFEM is discretized in a hierarchical basis. For the architecture, convolutional neural networks (CNNs) are chosen. The hierarchical basis then allows to handle sparse images for finely discretized meshes. Additionally, as corrections on finer levels decrease in amplitude, i.e., importance for the overall approximation, the accuracy of the network approximation is allowed to decrease successively. This can either be incorporated in the number of generated high fidelity samples used for training or the size of the network components responsible for the fine grid outputs. The architecture is described and preliminary numerical examples are presented.