Abstract:Global Coconut (Cocos nucifera (L.)) cultivation faces significant challenges, including yield loss, due to pest and disease outbreaks. In particular, Weligama Coconut Leaf Wilt Disease (WCWLD) and Coconut Caterpillar Infestation (CCI) damage coconut trees, causing severe coconut production loss in Sri Lanka and nearby coconut-producing countries. Currently, both WCWLD and CCI are detected through on-field human observations, a process that is not only time-consuming but also limits the early detection of infections. This paper presents a study conducted in Sri Lanka, demonstrating the effectiveness of employing transfer learning-based Convolutional Neural Network (CNN) and Mask Region-based-CNN (Mask R-CNN) to identify WCWLD and CCI at their early stages and to assess disease progression. Further, this paper presents the use of the You Only Look Once (YOLO) object detection model to count the number of caterpillars distributed on leaves with CCI. The introduced methods were tested and validated using datasets collected from Matara, Puttalam, and Makandura, Sri Lanka. The results show that the proposed methods identify WCWLD and CCI with an accuracy of 90% and 95%, respectively. In addition, the proposed WCWLD disease severity identification method classifies the severity with an accuracy of 97%. Furthermore, the accuracies of the object detection models for calculating the number of caterpillars in the leaflets were: YOLOv5-96.87%, YOLOv8-96.1%, and YOLO11-95.9%.
Abstract:This paper discusses the effectiveness of leveraging Chatbot: Generative Pre-trained Transformer (ChatGPT) versions 3.5 and 4 for analyzing research papers for effective writing of scientific literature surveys. The study selected the \textit{Application of Artificial Intelligence in Breast Cancer Treatment} as the research topic. Research papers related to this topic were collected from three major publication databases Google Scholar, Pubmed, and Scopus. ChatGPT models were used to identify the category, scope, and relevant information from the research papers for automatic identification of relevant papers related to Breast Cancer Treatment (BCT), organization of papers according to scope, and identification of key information for survey paper writing. Evaluations performed using ground truth data annotated using subject experts reveal, that GPT-4 achieves 77.3\% accuracy in identifying the research paper categories and 50\% of the papers were correctly identified by GPT-4 for their scopes. Further, the results demonstrate that GPT-4 can generate reasons for its decisions with an average of 27\% new words, and 67\% of the reasons given by the model were completely agreeable to the subject experts.