Abstract:Functional fixedness, a cognitive bias that restricts users' interactions with a new system or tool to expected or familiar ways, limits the full potential of Large Language Model (LLM)-enabled chat search, especially in complex and exploratory tasks. To investigate its impact, we conducted a crowdsourcing study with 450 participants, each completing one of six decision-making tasks spanning public safety, diet and health management, sustainability, and AI ethics. Participants engaged in a multi-prompt conversation with ChatGPT to address the task, allowing us to compare pre-chat intent-based expectations with observed interactions. We found that: 1) Several aspects of pre-chat expectations are closely associated with users' prior experiences with ChatGPT, search engines, and virtual assistants; 2) Prior system experience shapes language use and prompting behavior. Frequent ChatGPT users reduced deictic terms and hedge words and frequently adjusted prompts. Users with rich search experience maintained structured, less-conversational queries with minimal modifications. Users of virtual assistants favored directive, command-like prompts, reinforcing functional fixedness; 3) When the system failed to meet expectations, participants generated more detailed prompts with increased linguistic diversity, reflecting adaptive shifts. These findings suggest that while preconceived expectations constrain early interactions, unmet expectations can motivate behavioral adaptation. With appropriate system support, this may promote broader exploration of LLM capabilities. This work also introduces a typology for user intents in chat search and highlights the importance of mitigating functional fixedness to support more creative and analytical use of LLMs.
Abstract:Large language model (LLM) applications, such as ChatGPT, are a powerful tool for online information-seeking (IS) and problem-solving tasks. However, users still face challenges initializing and refining prompts, and their cognitive barriers and biased perceptions further impede task completion. These issues reflect broader challenges identified within the fields of IS and interactive information retrieval (IIR). To address these, our approach integrates task context and user perceptions into human-ChatGPT interactions through prompt engineering. We developed a ChatGPT-like platform integrated with supportive functions, including perception articulation, prompt suggestion, and conversation explanation. Our findings of a user study demonstrate that the supportive functions help users manage expectations, reduce cognitive loads, better refine prompts, and increase user engagement. This research enhances our comprehension of designing proactive and user-centric systems with LLMs. It offers insights into evaluating human-LLM interactions and emphasizes potential challenges for under served users.