Abstract:This research work delves into the manifestation of hallucination within Large Language Models (LLMs) and its consequential impacts on applications within the domain of mental health. The primary objective is to discern effective strategies for curtailing hallucinatory occurrences, thereby bolstering the dependability and security of LLMs in facilitating mental health interventions such as therapy, counseling, and the dissemination of pertinent information. Through rigorous investigation and analysis, this study seeks to elucidate the underlying mechanisms precipitating hallucinations in LLMs and subsequently propose targeted interventions to alleviate their occurrence. By addressing this critical issue, the research endeavors to foster a more robust framework for the utilization of LLMs within mental health contexts, ensuring their efficacy and reliability in aiding therapeutic processes and delivering accurate information to individuals seeking mental health support.
Abstract:Background and Objectives: Clinical Practice Guidelines (CPGs) represent the foremost methodology for sharing state-of-the-art research findings in the healthcare domain with medical practitioners to limit practice variations, reduce clinical cost, improve the quality of care, and provide evidence based treatment. However, extracting relevant knowledge from the plethora of CPGs is not feasible for already burdened healthcare professionals, leading to large gaps between clinical findings and real practices. It is therefore imperative that state-of-the-art Computing research, especially machine learning is used to provide artificial intelligence based solution for extracting the knowledge from CPGs and reducing the gap between healthcare research/guidelines and practice. Methods: This research presents a novel methodology for knowledge extraction from CPGs to reduce the gap and turn the latest research findings into clinical practice. First, our system classifies the CPG sentences into four classes such as condition-action, condition-consequences, action, and not-applicable based on the information presented in a sentence. We use deep learning with state-of-the-art word embedding, improved word vectors technique in classification process. Second, it identifies qualifier terms in the classified sentences, which assist in recognizing the condition and action phrases in a sentence. Finally, the condition and action phrase are processed and transformed into plain rule If Condition(s) Then Action format. Results: We evaluate the methodology on three different domains guidelines including Hypertension, Rhinosinusitis, and Asthma. The deep learning model classifies the CPG sentences with an accuracy of 95%. While rule extraction was validated by user-centric approach, which achieved a Jaccard coefficient of 0.6, 0.7, and 0.4 with three human experts extracted rules, respectively.
Abstract:Objective: Causality mining is an active research area, which requires the application of state-of-the-art natural language processing techniques. In the healthcare domain, medical experts create clinical text to overcome the limitation of well-defined and schema driven information systems. The objective of this research work is to create a framework, which can convert clinical text into causal knowledge. Methods: A practical approach based on term expansion, phrase generation, BERT based phrase embedding and semantic matching, semantic enrichment, expert verification, and model evolution has been used to construct a comprehensive causality mining framework. This active transfer learning based framework along with its supplementary services, is able to extract and enrich, causal relationships and their corresponding entities from clinical text. Results: The multi-model transfer learning technique when applied over multiple iterations, gains performance improvements in terms of its accuracy and recall while keeping the precision constant. We also present a comparative analysis of the presented techniques with their common alternatives, which demonstrate the correctness of our approach and its ability to capture most causal relationships. Conclusion: The presented framework has provided cutting-edge results in the healthcare domain. However, the framework can be tweaked to provide causality detection in other domains, as well. Significance: The presented framework is generic enough to be utilized in any domain, healthcare services can gain massive benefits due to the voluminous and various nature of its data. This causal knowledge extraction framework can be used to summarize clinical text, create personas, discover medical knowledge, and provide evidence to clinical decision making.