Abstract:Given a real inner product space $V$ and a group $G$ of linear isometries, we construct a family of $G$-invariant real-valued functions on $V$ that we call max filters. In the case where $V=\mathbb{R}^d$ and $G$ is finite, a suitable max filter bank separates orbits, and is even bilipschitz in the quotient metric. In the case where $V=L^2(\mathbb{R}^d)$ and $G$ is the group of translation operators, a max filter exhibits stability to diffeomorphic distortion like that of the scattering transform introduced by Mallat. We establish that max filters are well suited for various classification tasks, both in theory and in practice.
Abstract:We introduce an extension to local principal component analysis for learning symmetric manifolds. In particular, we use a spectral method to approximate the Lie algebra corresponding to the symmetry group of the underlying manifold. We derive the sample complexity of our method for a variety of manifolds before applying it to various data sets for improved density estimation.