Abstract:We introduce the first method of uncertainty quantification in the domain of Kolmogorov-Arnold Networks, specifically focusing on (Higher Order) ReLUKANs to enhance computational efficiency given the computational demands of Bayesian methods. The method we propose is general in nature, providing access to both epistemic and aleatoric uncertainties. It is also capable of generalization to other various basis functions. We validate our method through a series of closure tests, including simple one-dimensional functions and application to the domain of (Stochastic) Partial Differential Equations. Referring to the latter, we demonstrate the method's ability to correctly identify functional dependencies introduced through the inclusion of a stochastic term. The code supporting this work can be found at https://github.com/wmdataphys/Bayesian-HR-KAN
Abstract:Social bots remain a major vector for spreading disinformation on social media and a menace to the public. Despite the progress made in developing multiple sophisticated social bot detection algorithms and tools, bot detection remains a challenging, unsolved problem that is fraught with uncertainty due to the heterogeneity of bot behaviors, training data, and detection algorithms. Detection models often disagree on whether to label the same account as bot or human-controlled. However, they do not provide any measure of uncertainty to indicate how much we should trust their results. We propose to address both bot detection and the quantification of uncertainty at the account level - a novel feature of this research. This dual focus is crucial as it allows us to leverage additional information related to the quantified uncertainty of each prediction, thereby enhancing decision-making and improving the reliability of bot classifications. Specifically, our approach facilitates targeted interventions for bots when predictions are made with high confidence and suggests caution (e.g., gathering more data) when predictions are uncertain.
Abstract:Imaging Cherenkov detectors are crucial for particle identification (PID) in nuclear and particle physics experiments. Fast reconstruction algorithms are essential for near real-time alignment, calibration, data quality control, and efficient analysis. At the future Electron-Ion Collider (EIC), the ePIC detector will feature a dual Ring Imaging Cherenkov (dual-RICH) detector in the hadron direction, a Detector of Internally Reflected Cherenkov (DIRC) in the barrel, and a proximity focus RICH in the electron direction. This paper focuses on the DIRC detector, which presents complex hit patterns and is also used for PID of pions and kaons in the GlueX experiment at JLab. We present Deep(er)RICH, an extension of the seminal DeepRICH work, offering improved and faster PID compared to traditional methods and, for the first time, fast and accurate simulation. This advancement addresses a major bottleneck in Cherenkov detector simulations involving photon tracking through complex optical elements. Our results leverage advancements in Vision Transformers, specifically hierarchical Swin Transformer and normalizing flows. These methods enable direct learning from real data and the reconstruction of complex topologies. We conclude by discussing the implications and future extensions of this work, which can offer capabilities for PID for multiple cutting-edge experiments like the future EIC.
Abstract:The 2023 AI4EIC hackathon was the culmination of the third annual AI4EIC workshop at The Catholic University of America. This workshop brought together researchers from physics, data science and computer science to discuss the latest developments in Artificial Intelligence (AI) and Machine Learning (ML) for the Electron Ion Collider (EIC), including applications for detectors, accelerators, and experimental control. The hackathon, held on the final day of the workshop, involved using a chatbot powered by a Large Language Model, ChatGPT-3.5, to train a binary classifier neutrons and photons in simulated data from the \textsc{GlueX} Barrel Calorimeter. In total, six teams of up to four participants from all over the world took part in this intense educational and research event. This article highlights the hackathon challenge, the resources and methodology used, and the results and insights gained from analyzing physics data using the most cutting-edge tools in AI/ML.
Abstract:We introduce a physics-informed Bayesian Neural Network (BNN) with flow approximated posteriors using multiplicative normalizing flows (MNF) for detailed uncertainty quantification (UQ) at the physics event-level. Our method is capable of identifying both heteroskedastic aleatoric and epistemic uncertainties, providing granular physical insights. Applied to Deep Inelastic Scattering (DIS) events, our model effectively extracts the kinematic variables $x$, $Q^2$, and $y$, matching the performance of recent deep learning regression techniques but with the critical enhancement of event-level UQ. This detailed description of the underlying uncertainty proves invaluable for decision-making, especially in tasks like event filtering. It also allows for the reduction of true inaccuracies without directly accessing the ground truth. A thorough DIS simulation using the H1 detector at HERA indicates possible applications for the future EIC. Additionally, this paves the way for related tasks such as data quality monitoring and anomaly detection. Remarkably, our approach effectively processes large samples at high rates.
Abstract:Object detection utilizing Frequency Modulated Continous Wave radar is becoming increasingly popular in the field of autonomous systems. Radar does not possess the same drawbacks seen by other emission-based sensors such as LiDAR, primarily the degradation or loss of return signals due to weather conditions such as rain or snow. However, radar does possess traits that make it unsuitable for standard emission-based deep learning representations such as point clouds. Radar point clouds tend to be sparse and therefore information extraction is not efficient. To overcome this, more traditional digital signal processing pipelines were adapted to form inputs residing directly in the frequency domain via Fast Fourier Transforms. Commonly, three transformations were used to form Range-Azimuth-Doppler cubes in which deep learning algorithms could perform object detection. This too has drawbacks, namely the pre-processing costs associated with performing multiple Fourier Transforms and normalization. We explore the possibility of operating on raw radar inputs from analog to digital converters via the utilization of complex transformation layers. Moreover, we introduce hierarchical Swin Vision transformers to the field of radar object detection and show their capability to operate on inputs varying in pre-processing, along with different radar configurations, i.e. relatively low and high numbers of transmitters and receivers, while obtaining on par or better results than the state-of-the-art.