Abstract:Large Language Models (LLMs) have shown remarkable promise in their ability to interact proficiently with humans. Subsequently, their potential use as artificial confederates and surrogates in sociological experiments involving conversation is an exciting prospect. But how viable is this idea? This paper endeavors to test the limits of current-day LLMs with a pre-registered study integrating real people with LLM agents acting as people. The study focuses on debate-based opinion consensus formation in three environments: humans only, agents and humans, and agents only. Our goal is to understand how LLM agents influence humans, and how capable they are in debating like humans. We find that LLMs can blend in and facilitate human productivity but are less convincing in debate, with their behavior ultimately deviating from human's. We elucidate these primary failings and anticipate that LLMs must evolve further before being viable debaters.
Abstract:Relationships between people constantly evolve, altering interpersonal behavior and defining social groups. Relationships between nodes in social networks can be represented by a tie strength, often empirically assessed using surveys. While this is effective for taking static snapshots of relationships, such methods are difficult to scale to dynamic networks. In this paper, we propose a system that allows for the continuous approximation of relationships as they evolve over time. We evaluate this system using the NetSense study, which provides comprehensive communication records of students at the University of Notre Dame over the course of four years. These records are complemented by semesterly ego network surveys, which provide discrete samples over time of each participant's true social tie strength with others. We develop a pair of powerful machine learning models (complemented by a suite of baselines extracted from past works) that learn from these surveys to interpret the communications records as signals. These signals represent dynamic tie strengths, accurately recording the evolution of relationships between the individuals in our social networks. With these evolving tie values, we are able to make several empirically derived observations which we compare to past works.